New Isotopes of Element 107: ²⁶⁶Bh and ²⁶⁷Bh*

P. A. Wilk, †‡ K. E. Gregorich, † A. Türler, § C. A. Laue, † R. Eichler, §†† V. Ninov, † J. L. Adams, †‡ U. W. Kirbach, † M. R. Lane, †‡ D. M. Lee, † J. B. Patin, †‡ D. A. Shaughnessy, †‡ D. A. Strellis, † H. Nitsche, †‡ D. C. Hoffman, †‡

This experiment was undertaken to try to produce and identify the new neutron-rich isotopes of bohrium, ²⁶⁶Bh and ²⁶⁷Bh. These isotopes were predicted to have half-lives possibly long enough to enable studies of the chemical properties of Bh.

In our experiment, the nuclides ²⁶⁷Bh and ²⁶⁶Bh were produced via the ²⁴⁹Bk(²²Ne,4*n*) and ²⁴⁹Bk(²²Ne,5*n*) reactions. The LBNL 88-Inch Cyclotron provided 2-eμA beams of 148-MeV ²²Ne⁶⁺ and 153-MeV ²²Ne⁶⁺. The 0.81 mg/cm² ²⁴⁹Bk target was prepared as the oxide by the molecular plating technique. Reaction products were transported from the target system [1] through a capillary to the merry-go-round (MG) detection system [2].

For this experiment, a parent-daughter stepping mode was used to provide detection of α - α correlations with a greatly reduced background [3].

A search was made for $\alpha\text{-}\alpha$ correlations between Bh $\alpha\text{-events}$ $(8.6 < E_{\alpha} \, (\text{MeV}) < 10.5)$ initiating parent-mode and subsequent daughter $\alpha\text{-events}$ $(8.2 < E_{\alpha} < 8.7)$ detected in the same detector pair during the ensuing daughter mode search. Five atoms of ^{267}Bh $(T_{\frac{1}{2}}=17^{+14}_{-6}\text{s}; E_{\alpha}=8.83\pm0.03 \, \text{MeV})$ and one atom of ^{266}Bh $(E_{\alpha}=9.29 \, \text{MeV})$ were identified during the experiment. The five $\alpha\text{-events}$ attributed to the $\alpha\text{-decay}$ of ^{267}Bh daughter nuclei are consistent with ^{263}Lr and ^{259}Ha . The $^{249}Bk(^{22}Ne,4n)^{267}Bh$ cross section is about 70 pb.

Based the random correlation rate, we estimate that approximately one of the five ^{267}Bh α - α correlations reported is actually due to a random correlation of unrelated α decays. The expected number of random α - α - α triple correlations is 0.08.

During the entire experiment, there was only one instance where a potential parent event was followed by two α particles with $8.2 < E_{\alpha}(MeV) <$

8.7 in the daughter mode. The daughter-mode energies and lifetimes are consistent with those expected for ²⁶²Ha and for ²⁵⁸Lr. On this basis we assign this event to the decay of ²⁶⁶Bh produced in the ²⁴⁹Bk(²²Ne,5*n*) reaction. This triple correlation occurred during the 153-MeV bombardment, supporting the assignment of the 5*n*-exit channel.

The lifetime of the new isotope ²⁶⁷Bh is sufficient for studies of the chemical properties of element 107 in either the aqueous or gas phase with fast separation techniques currently in use.

Footnotes and References

- * submitted to the Physical Review February, 2000
- † Nuclear Science Division, LBNL
- ‡ Department of Chemistry, U.C. Berkeley
- § Paul Scherrer Institut, Switzerland
- †† Universität Bern, Switzerland
- 1. P. A. Wilk et al., Phys. Rev. C 56, 1626-8 (1997).
- 2. D. C. Hoffman et al., Phys. Rev. C 41, 631 (1990).
- 3. K. E. Gregorich *et al.*, Phys. Rev. Letters **72**, 1423-6 (1994).

Fig. 1. Partial decay chain of ²⁶⁶Bh and ²⁶⁷Bh. Decay properties of ²⁶⁶Bh and ²⁶⁷Bh in the dashed boxes are as measured during this experiment.